AI Hub

주차장애물 인지 영상 소개

주차장애물 인지 영상 소개

데이터셋명 주차장애물 인지 영상
데이터 분야 자율주행 데이터 유형 이미지
구축기관 에이모 데이터 관련 문의처 담당자명 강상현(에이모)
가공기관 에이모 전화번호 070-4112-8373
검수기관 에이모 이메일 hyun@aimmo.co.kr
구축 데이터량 110만 구축년도 2020년
버전 1.1 최종수정일자 2021.11.02
소개 주차 장애물 인지를 위한 실내외 주차장 영상 및 이미지 데이터
주요 키워드 자율주행, 주행환경 인식, 판단, 주행전략 수립, 차량 제어, 센서 기반 주행상황 인지 시스템, 통합 차량 제어 솔루션, 인지정확도, AI 알고리즘
저작권 및 이용정책 본 데이터는 과학기술정보통신부가 주관하고 한국지능정보사회진흥원이 지원하는 '인공지능 학습용 데이터 구축사업'으로 구축된 데이터입니다. [데이터 이용정책 상세보기]
데이터설명서 자료보기 구축활용가이드 자료보기
샘플데이터 다운로드 교육활용동영상 영상보기
저작도구 다운로드 AI모델 업데이트 중
데이터 변경이력
주차장애물 인지 영상-데이터변경이력
버전 일자 변경내용 비고
1.1 2021.11.02 데이터 품질 보완 및 추가 개방  
1.0 2021.06.25 데이터 최초 개방  
구축 목적
  • 자율주행환경에서 주차 장애물 객체를 인식할 수 있도록 인공지능을 훈련하기 위한 데이터셋
활용 분야
  • 실내 및 실외 주차장 환경에서 주차보조 시스템 및 자율주행 주차시스템에 적용가능. 
소개
  • 실내 및 실외 주차장 환경에서 다양한 정적객체(주차라인 및 주차관련 정적 장애물 등)를 인지하기 위한 어노테이션을 진행하며, 다양한 방식의 어노테이션 타입을 통해 데이터의 활용도를 높힘. 수집은 자율주행 모사차량을 통한 실제적인 영상수집을 통해 해당 영상들에서 추출된 이미지 데이터를 기준으로 데이터셋을 구축하며, 또한 모든 데이터는 사람 또는 차량번호판에 대한 비식별화 작업을 진행함.
구축 내용 및 제공 데이터량
  • 주차장애물 인지 데이터셋 330시간 , 110만장의 이미지 데이터셋 구축
대표도면

주차장애물 인지 영상-대표도면-1

필요성
  • 자율주행차 산업은 글로벌 시장 내 기술 격차가 줄어들고 있으며, IT 기술(통신,센서)이 급격하게 발달함에 따라 상용화가 앞당겨지는 등 고성장이 전망됨.
  • 또한 기존 기계기술 중심의 자동차산업이 ICT 첨단기술을 중심으로 융/복합화가 진행되어 시장 및 산업구조 변화와 산업생태계가 확장되고 있음.
  • 이처럼 시장 및 생태계는 점점 규모가 커지고 있으나, 국내 자율주행 관련 기업들이 시범운행 중인 자율주행 차량 대수는 중국 바이두의 1/4 수준이며, 누적 시범주행 거리는 웨이모의 1/45 수준으로 축적된 데이터의 양 또한 격차가 커지고 있는 상황
  • 현재 국내 자율주행차량용 영상인식 알고리즘 개발시 영상처리용 데이터는 대부분 해외 공개 데이터를 활용하여 이뤄지고 있는바, 국내 도로환경 및 주행조건 등을 제대로 반영하지 못하고 있으며 그로 인해 인공지능기반 인식기술의 성능이 크게 개선되지 못 하고 있음.
  • 공개 데이터 역시 부족한 상항이며, 때문에 국내 상황에 맞는 도로주행 영상데이터의 획득이 매우 중요하고 이에대한 정부의 관련 지원이 많이 필요한 상황임.
데이터 구조
  • Json 데이터 구성주차장애물 인지 영상-데이터 구조-1

     

  • 어노테이션 포맷
    데이터 구조 표
    No 항목 타입 필수여부
    한글명 영문명
    1 환경메타정보 info    
      1-1 생성일 info_date_created string YYYYMMDD 필수
      1-2 장소_시도 info_location_si list 문자열 필수
      1-3 장소_시군 info_location_gun list 문자열 필수
      1-4 장소_구 info_location_gu list 문자열 필수
      1-5 날씨 info_weather list 맑음/흐림/비/눈 필수
      1-6 주야구분 info_time list 주간/야간 필수
      1-7 주차장구분 info_time list 실내/실외 필수
    2 카메라정보 camera    
      2-1 카메라타입 camera_type string AVM / front / rear / left / right 필수
      2-2 채널 camera_channel list 1 ~ 128 필수
      2-3 화소 camera_pixel string 문자열 필수
      2-4 화각 camera_angle string 10 ~ 180 필수
      2-5 해상도_가로 camera_resolution_width string 720 / 1280 / 1920 필수
      2-6 해상도_세로 camera_resolution_height string 480 / 768 / 1080 필수
      2-7 프레임레이트 camera_framerate list 10/30/60/90/120 필수
      2-8 카메라부착높이 camera_location_height string 문자열 선택
      2-9 카메라부착거리 camera_location_distance string 문자열 선택
    3 어노테이션 정보(2D바운딩박스) lable    
      3-1 어노테이션 ID lable_id string 문자열 필수
      3-2 폴더명 lable_folder string 문자열 필수
      3-3 파일명 lable_filename string 문자열 필수
      3-4 어노테이션타입 lable_type list   필수
      3-5 이미지사이즈 가로사이즈 lable_width string   필수
      3-6 이미지사이즈 세로사이즈 lable_height string   필수
      3-7 바운딩박스 X 최소값 lable_bndbox_xmin string   필수
      3-8 바운딩박스 Y 최소값 lable_bndbox_ymin string   필수
      3-9 바운딩박스 X 최대값 lable_bndbox_xmax string   필수
      3-10 바운딩박스 Y 최대값 lable_bndbox_ymax string   필수
      3-11 세그멘테이션 X 좌표 lable_segmentation_x string   필수
      3-12 세그멘테이션 Y 좌표 lable_segmentation_y string   필수
      3-13 키포인트 No keypoint_no string   필수
      3-14 키포인트 X keypoint_x string   필수
      3-15 키포인트 Y keypoint_y string   필수
      3-16 클래스 lable_class list 문자열 필수
      3-17 속성 lable_attributes list 문자열 필수
데이터셋 구축 담당자
수행기관(주관) : 에이모
수행기관(주관) 표
책임자명 전화번호 대표이메일 담당업무
오승택 031-706-3533 hyun@aimmo.co.kr · 데이터 구축 총괄

 

수행기관(참여)
수행기관(참여) 표
기관명 담당업무 기관명 담당업무
TQS코리아 · 데이터가공  한국자동차연구원 · 데이터수집 
차세대융합기술연구원 · AI 학습모델 개발 도로교통공단 · 데이터수집
스프링클라우드 · 데이터수집 스마트모빌리티랩 · 데이터수집
LX공사 · 데이터수집 지어소프트 · 데이터가공
지오스토리 · 데이터정제(비식별화) 비투엔 · 데이터검증
모트렉스 · AI 학습모델 개발
· AI 응용소프트웨어 개발
와이즈오토모티브 · AI 학습모델 개발
· AI 응용소프트웨어 개발
AV지니어스 · AI 학습모델 개발
· AI 응용소프트웨어 개발